Part Number Hot Search : 
GSIB2580 ATTD1 SQD50 MSC80213 TND307 1608X7R STP7N80Z HDSPN10X
Product Description
Full Text Search
 

To Download IRGP4085DPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 97286
IRGP4085DPBF
PDP TRENCH IGBT
Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery Circuits in PDP Applications TM) l Low VCE(on) and Energy per Pulse (EPULSE for Improved Panel Efficiency l High Repetitive Peak Current Capability l Lead Free Package
Key Parameters
VCE min VCE(ON) typ. @ IC = 70A IRP max @ TC= 25C c TJ max
C
330 1.69 250 150
C
V V A C
G
E G
E
C
n-channel
G G ate C C ollector
TO-247AC
E E m itter
Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications.
Absolute Maximum Ratings
Parameter
VGE IC @ TC = 25C IC @ TC = 100C IRP @ TC = 25C PD @TC = 25C PD @TC = 100C TJ TSTG Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V Continuous Collector, VGE @ 15V Repetitive Peak Current c Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw 300 10lbxin (1.1Nxm) N
Max.
30 70 40 250 160 63 1.3 -40 to + 150
Units
V A
W W/C C
Thermal Resistance
Parameter
RJC (IGBT) RJC (Diode)
RCS RJA
Typ.
--- 1.6 0.24 --- 6.0 (0.21)
Max.
0.80 2.4 --- 40 ---
Units
Thermal Resistance Junction-to-Case-(each IGBT) d Thermal Resistance Junction-to-Case-(each Diode) d Case-to-Sink (flat, greased surface) Junction-to-Ambient (typical socket mount) d Weight
C/W g (oz)
www.irf.com
1
06/05/07
IRGP4085DPBF
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
BVCES VCES/TJ Collector-to-Emitter Breakdown Voltage Breakdown Voltage Temp. Coefficient
Min.
330 --- --- --- --- --- --- 2.6 --- --- --- --- --- --- --- --- --- -- -- -- -- -- -- -- -- 100 --- ---
Typ. Max. Units
--- 0.34 1.18 1.36 1.69 2.26 1.93 --- -11 2.0 5.0 100 --- --- 50 85 31 47 37 176 99 45 38 228 183 --- 834 985 2297 141 74 5.0 13 --- --- 1.48 1.68 2.09 2.76 --- 5.0 --- 25 --- --- 100 -100 --- --- --- -- -- -- -- -- -- -- -- --- --- --- --- --- --- --- --- pF V V/C
Conditions
VGE = 0V, ICE = 1 mA Reference to 25C, ICE = 1mA VGE = 15V, ICE = 25A VGE = 15V, ICE = 40A VGE = 15V, ICE = 70A VGE = 15V, ICE = 120A VGE = 15V, ICE = 70A, TJ = 150C VCE = VGE, ICE = 500A
VCE(on)
Static Collector-to-Emitter Voltage
V
e e e e
VGE(th) VGE(th)/TJ ICES
Gate Threshold Voltage Gate Threshold Voltage Coefficient Collector-to-Emitter Leakage Current
IGES gfe Qg Qgc td(on) tr td(off) tf td(on) tr td(off) tf tst EPULSE
Gate-to-Emitter Forward Leakage Gate-to-Emitter Reverse Leakage Forward Transconductance Total Gate Charge Gate-to-Collector Charge Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On delay time Rise time Turn-Off delay time Fall time Shoot Through Blocking Time Energy per Pulse
V mV/C A VCE = 330V, VGE = 0V VCE = 330V, VGE = 0V, TJ = 100C VCE = 330V, VGE = 0V, TJ = 150C nA VGE = 30V VGE = -30V VCE = 25V, ICE = 25A S nC VCE = 200V, IC = 25A, VGE = 15Ve IC = 25A, VCC = 196V RG = 10, L=200H, LS= 200nH TJ = 25C IC = 25A, VCC = 196V RG = 10, L=200H, LS= 200nH TJ = 150C VCC = 240V, VGE = 15V, RG= 5.1 L = 220nH, C= 0.40F, VGE = 15V VCC = 240V, RG= 5.1, TJ = 25C L = 220nH, C= 0.40F, VGE = 15V VCC = 240V, RG= 5.1, TJ = 100C VGE = 0V VCE = 30V = 1.0MHz, See Fig.13 Between lead, 6mm (0.25in.) from package and center of die contact
ns
ns
ns J
Ciss Coss Crss LC LE
Input Capacitance Output Capacitance Reverse Transfer Capacitance Internal Collector Inductance Internal Emitter Inductance
--- --- --- --- ---
nH
Diode Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
IF(AV) IFSM VF trr Average Forward Current at TC=155C Non Repetitive Peak Surge Current Forward Voltage Reverse Recovery Time
Min.
--- --- --- --- --- --- --- --- --- --- ---
Typ. Max. Units
--- --- 1.19 0.94 35 43 67 60 210 2.8 6.3 8.0 100 1.3 1.0 60 --- --- --- --- --- --- A A V ns
Conditions
TJ = 155C, PW = 6.0ms half sine wave IF = 8A IF = 8A, TJ = 150C IF = 1A, di/dt = -50A/s, VR =30V TJ = 25C TJ = 125C IF = 8A TJ = 25C di/dt = 200A/s TJ = 125C VR = 200V TJ = 25C TJ = 125C
Qrr Irr
Reverse Recovery Charge Peak Recovery Current
nC A
Notes: Half sine wave with duty cycle = 0.1, ton=2sec. R is measured at TJ of approximately 90C.
Pulse width 400s; duty cycle 2%.
2
www.irf.com
IRGP4085DPBF
200 VGE = 18V 200 VGE = 18V 160 160 VGE = 15V VGE = 12V
ICE (A) ICE (A)
VGE = 15V VGE = 12V VGE = 10V
120
VGE = 10V
120
VGE = 8.0V 80 VGE = 6.0V
VGE = 8.0V VGE = 6.0V
80
40
40
0 0 4 8 VCE (V) 12 16
0 0 4 8 VCE (V) 12 16
Fig 1. Typical Output Characteristics @ 25C
200 VGE = 18V 160
Fig 2. Typical Output Characteristics @ 75C
200 VGE = 18V 160 VGE = 15V VGE = 12V VGE = 10V
ICE (A)
VGE = 15V VGE = 12V VGE = 10V
ICE (A)
120
VGE = 8.0V VGE = 6.0V
120
VGE = 8.0V VGE = 6.0V
80
80
40
40
0 0 4 8 VCE (V) 12 16
0 0 4 8 VCE (V) 12 16
Fig 3. Typical Output Characteristics @ 125C
300 250 200 150 100 50 0 2 4 6 8 10 12 14 16 VGE (V) TJ = 25C TJ = 150C
Fig 4. Typical Output Characteristics @ 150C
14 12 10
VCE (V)
IC = 25A
ICE (A)
8 6 4 2 0 0 5 10 VGE (V)
TJ = 25C TJ = 150C
15
20
Fig 5. Typical Transfer Characteristics
Fig 6. VCE(ON) vs. Gate Voltage
www.irf.com
3
IRGP4085DPBF
80 70
IC, Collector Current (A)
300
Repetitive Peak Current (A)
60 50 40 30 20 10 0 0 25 50 75 100 125 150
200
100 ton= 2s Duty cycle = 0.1 Half Sine Wave 0 25 50 75 100 125 150 Case Temperature (C)
T C, Case Temperature (C)
Fig 7. Maximum Collector Current vs. Case Temperature
1000 VCC = 240V 900
Energy per Pulse (J)
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1000
L = 220nH C = variable
900
Energy per Pulse (J)
L = 220nH C = 0.4F 100C
100C
800 700 25C 600 500 400 170 180 190 200 210 220 230 240
800 700 600 500 400 180 190 200 210 220 230 240 25C
IC, Peak Collector Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current
1400 VCC = 240V 1200
Energy per Pulse (J)
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1000
L = 220nH t = 1s half sine
C= 0.4F
1000
100
IC (A)
C= 0.3F
100 s 1ms
10 s
800 600 400
10
C= 0.2F
1
200 25 50 75 100 125 150 TJ, Temperature (C)
1
10 VCE (V)
100
1000
Fig 11. EPULSE vs. Temperature
Fig 12. Forward Bias Safe Operating Area
4
www.irf.com
IRGP4085DPBF
10000
25
VGE, Gate-to-Source Voltage (V)
ID= 25A VDS = 240V VDS= 200V VDS= 150V
Cies
Capacitance (pF)
1000
20
15
10
100
Coes Cres
5
10 0 100 200 300
0 0 20 40 60 80 100 120 QG Total Gate Charge (nC)
VCE (V)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
1 D = 0.50
Thermal Response ( Z thJC )
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
0.20 0.1 0.10 0.05 0.02 0.01
J J 1 1 R1 R1 2 R2 R2 R3 R3 3 C 3
Ri (C/W) i (sec) 0.146 0.000131 0.382 0.271 0.001707 0.014532
0.01
2
Ci= i/Ri Ci i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1
0.001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10
R1 R1 J 1 2 R2 R2 R3 R3 3 R4 R4 C 3 4 4
0.1
0.05 0.02 0.01
J
1
2
0.01
Ci= i/Ri Ci i/Ri
Ri (C/W) 0.07854 0.829201 1.002895 0.490875
(sec)
0.000637 0.000532 0.003412 0.055432
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001 0.01
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.1 1
t1 , Rectangular Pulse Duration (sec)
Fig 16. Maximum Effective Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
5
IRGP4085DPBF
IF, Instantaneous Forward Current (A)
100
90 80 70 60 50 40 30
10
trr - (ns)
IF = 8.0A, TJ =125C
1
Tj = 150C Tj = 25C
IF = 8.0A, TJ =25C
0.1 0.0 0.5 1.0 1.5 2.0 2.5 VFM, Forward Voltage Drop (V)
20 100 1000
Fig. 17 - Typical Forward Voltage Drop Characteristics
400
Fig. 18 - Typical Reverse Recovery vs. di F /dt
dif / dt - (A / s)
300
IF = 8.0A, TJ =125C
Qrr - (ns)
200
100
A
Fig.20 - Switching Loss Circuit
IF = 8.0A, TJ =25C
RG C L
DRIVER
0 100 1000
dif / dt - (A / s)
VCC
B
Fig. 19- Typical Stored Charge vs. di F /dt
VCE Energy IC Current
RG
Ipulse DUT
Fig 21a. tst and EPULSE Test Circuit
Fig 21b. tst Test Waveforms
PULSE A
L
PULSE B
0
DUT 1K
VCC
tST
Fig 21c. EPULSE Test Waveforms
Fig. 22 - Gate Charge Circuit (turn-off)
6
www.irf.com
IRGP4085DPBF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6 ,6 $1 ,5)3( :,7+ $66(0%/< /27 &2'( $66(0%/(' 21 :: ,1 7+( $66(0%/< /,1( + 1RWH 3 LQ DVVHPEO\ OLQH SRVLWLRQ LQGLFDWHV /HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27 &2'( 3$57 180%(5
,5)3(
A "$C $%AAAAAAAAAAA$&
'$7( &2'( <($5 :((. /,1( +
TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkigbt.html The specifications set forth in this data sheet are the sole and exclusive specifications applicable to the identified product, and no specifications or features are implied whether by industry custom, sampling or otherwise. We qualify our products in accordance with our internal practices and procedures, which by their nature do not include qualification to all possible or even all widely used applications. Without Data and specifications subject to change without notice. limitation, we have not qualified our product for medical use or applications involving hi-reliability applications. Customers are This product has been designed for the Industrial market. Qualification Standards can be found on IR's Web site. encouraged to and responsible for qualifying product to their own use and their own application environments, especially where particular features are critical to operational performance or safety. Please contact your IR representative if you have specific design or use requirements or for further information. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.06/07
www.irf.com
7


▲Up To Search▲   

 
Price & Availability of IRGP4085DPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X